
A three-dimensional inverse heat conduction problem in
estimating surface heat ¯ux by conjugate gradient method

Cheng-Hung Huang*, Shao-Pei Wang

Department of Naval Architecture and Marine Engineering, National Cheng Kung University, Tainan 701, Taiwan, Republic of China

Received 5 August 1998; received in revised form 4 January 1999

Abstract

In the present study a three-dimensional (3-D) transient inverse heat conduction problem is solved using the

conjugate gradient method (CGM) and the general purpose commercial code CFX4.2-based inverse algorithm to
estimate the unknown boundary heat ¯ux in any 3-D irregular domain.
The advantage of calling CFX4.2 as a subroutine in the present inverse calculation lies in that many di�cult but

practical 3-D inverse problems that can be solved under this construction.

Results obtained by using the conjugate gradient method to solve these 3-D inverse problems are justi®ed based
on the numerical experiments. It is concluded that accurate boundary ¯uxes can be estimated by the CGM except
for the ®nal time. The reason and improvement of this singularity are addressed. Finally, the e�ects of the

measurement errors on the inverse solutions are discussed. # 1999 Elsevier Science Ltd. All rights reserved.

1. Introduction

The direct heat conduction problems are concerned

with the determination of temperature at interior

points of a region when the initial and boundary con-

ditions, thermophysical properties and heat generation

are speci®ed. In contrast, the inverse heat conduction

problem involves the determination of the surface con-

ditions [1], energy generation [2] and thermoproperties

[3±5] from the knowledge of the temperature measure-

ments taken within the body.

For the two-dimensional inverse problems in regular

coordinates (i.e. the rectangular, cylindrical and spheri-

cal coordinates) or in irregular domain, various

approaches are available and can be found in the lit-

erature [6±10]. However, the three-dimensional inverse

problems with irregular domain is very limited in the

literature.

There are many commercial codes available for sol-

ving ¯uid dynamic and heat transfer problems, such as

CFX4.2, UNIC, PHONICS, etc. These codes can be

used to calculate many practical but di�cult direct

thermal problems. If one can devise an inverse algor-

ithm, which has the ability to communicate with thse

commercial codes by means of data transportation, a

generalized 3-D inverse heat transfer problem can thus

be established. The objective of the present study is to

utilize the CFX4.2 code as the subroutine in solving

the 3-D inverse problems by CGM. CFX4.2 is avail-

able from AEA technology and the method of control

volume is used to solve the thermal problems.

The CGM is also called an iterative regularization

method, which means the regularization procedure is

performed during the iterative processes and thus the

determination of optimal regularization conditions is

not needed. The present work addresses the develop-

ments of the conjugate gradient algorithms for estimat-
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ing unknown boundary heat ¯uxes in a 3-D transient
heat conduction problem. The CGM derives from the
perturbation principles and transforms the inverse pro-
blem to the solution of three problems, namely, the
direct, sensitivity and the adjoint problem. These three
problems are solved by CFX4.2 and the calculated
values are used in CGM for inverse calculations. The
bridge between CFX and CGM is the INPUT/
OUTPUT ®les. These ®les should be arranged such
that their format can be recognized by CFX and
CGM.
Finally, the inverse solutions for two transient heat

conduction problems with irregular geometry and
di�erent boundary conditions will be illustrated to
show the validity of using the CGM in the present 3-D
inverse problem.

2. The direct problem

To illustrate the methodology for developing ex-
pressions for use in determining unknown surface heat
¯ux in a homogeneous medium by CGM and CFX4.2,
we consider the following 3-D inverse heat conduction
problem. For a domain O, the initial temperature
equals T0. When t>0, the boundary conditions on
boundary surfaces S2 (bottom surface), S3, S4, S5 and
S6 are all assumed insulated, while the boundary con-
dition on boundary S1 (upper surface) is subjected to
an unknown heat ¯ux q(S1, t ), which is a function of
surface positions and time. Fig. 1a shows the geometry

and the coordinates for the 3-D physical problem con-
sidered here.
The dimensionless mathematical formulation of this

linear heat conduction problem is given by:

@ 2T

@x 2
� @

2T

@y2
� @

2T

@z2
� @T

@ t
in O, t > 0 �1a�

@T

@n
� 0 on S2±S6, t > 0 �1b�

@T

@n
� q�S1,t� � ? on S1, t > 0 �1c�

T � T0 in O, t � 0 �1d�
The solution for the above 3-D transient heat conduc-
tion problem in an irregular domain O is solved using
CFX4.2 and its Fortran subroutine USRBCS. The
direct problem considered here is concerned with the
determination of the medium temperature when all the
boundary conditions at all boundaries are known.

3. The inverse problem

For the inverse problem, the boundary heat ¯ux on
S1 is regarded as being unknown, but everything else
in Eq. (1) is known. In addition, temperature readings
using infrared scanners taken at some appropriate
locations and time on S2 are considered available.
Let the temperature reading taken by infrared scan-

ners on S2 be denoted by Y(S2, t )0Y(xm, ym, zm, t )0

Nomenclature

J functional de®ned by Eq. (2)
J ' gradient of functional de®ned by Eq. (11a)
P direction of descent de®ned by Eq. (3b)

q unknown surface heat ¯ux
S boundary of the computational domain
T calculated temperature

Y measured temperature.

Greek symbols
b search step size de®ned by Eq. (6)
g conjugate coe�cient de®ned by Eq. (3c)

DT solution of sensitivity problem
e convergence criteria
l solution for adjoint problem

s standard deviation of the measurement errors
o random number
O computation domain.

Superscript

Ã estimated values.
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Ym (t ), m=1±M, where M represents the number of

measured temperature extracting points. We note that

the measured temperature Ym (t ) contain measurement

errors. Then the inverse problem can be stated as fol-

lows: by utilizing the above mentioned measured tem-

perature data Ym (t ), estimate the unknown boundary

heat ¯ux q(S1, t ).

The solution of the present inverse problem is to be

obtained in such a way that the following functional is

minimized:

J �q�S1,t�� �
�tf
t�0

XM
m�1
�T�xm, ym, zm, t�

ÿ Y�xm, ym, zm, t��2 dt

�
�tf
t�0

XM
m�1
�Tm�t� ÿ Ym�t��2 dt �2�

Fig. 1. (a) The geometry and coordinates for the present study. (b) The grid system for the present study.
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where Tm (t ) are the estimated or computed tempera-
tures at the measured temperature extracting locations
(xm, ym, zm) at time t. These quantities are determined
from the solution of the direct problem given pre-
viously by using an estimated qÃ(S1, t ) for the exact
q(S1, t ). Here the hat ` Ã ' denotes the estimated quan-
tities and tf is the ®nal time.

4. CGM for minimization

The following iterative process based on the CGM
[1] is now used for the estimation of unknown heat
¯ux q(S1, t ) by minimizing the functional
J [q(S1, t )]

q̂n�1�S1, t� � q̂n�S1, t� ÿ bnPn�S1,t�

for n � 0, 1, 2, . . .
�3a�

where b n is the search step size in going from iteration
n to iteration n+1, and Pn(S1, t ) is the direction of
descent (i.e. search direction) given by

Pn�S1, t� � J n�S1, t� � gnPnÿ1�S1, t� �3b�
which is a conjugation of the gradient direction J 'n(S1,
t ) at iteration n and the direction of descent Pnÿ1(S1,
t ) at iteration nÿ 1. The conjugate coe�cient is deter-
mined from

gn �

�tf
t�0

�
S1

�J 0n�2 dS1 dt�tf
t�0

�
S1

�J 0nÿ1�2 dS1 dt

with g0 � 0 �3c�

We note that when g n=0 for any n, in Eq. (3b), the
direction of descent Pn(S1, t ) becomes the gradient
direction, i.e. the `steepest descent' method is obtained.
The convergence of the above iterative procedure in
minimizing the functional J is guaranteed in [11].
To perform the iterations according to Eq. (3a), we

need to compute the step size b n and the gradient of
the functional J 'n(S1, t ). In order to develop ex-
pressions for the determination of these two quantities,
a `sensitivity problem' and an `adjoint problem' are
constructed as described below.

4.1. Sensitivity problem and search step size

The sensitivity problem is obtained from the original
direct problem de®ned by Eq. (1) in the following
manner: it is assumed that when q(S1, t ) undergoes a
variation Dq, T is perturbed by DT. Then replacing in
the direct problem q by q+Dq and T by T+DT, sub-
tracting from the resulting expressions the direct pro-
blem and neglecting the second-order terms, the

following sensitivity problem for the sensitivity func-
tion DT are obtained.

@ 2DT
@x 2

� @
2DT
@y2

� @
2DT
@z2

� @DT
@ t

in O, t > 0 �4a�

@DT
@n
� 0 on S2±S6, t > 0 �4b�

@DT
@n
� Dq�S1, t� on S1, t > 0 �4c�

DT � 0 in O, t � 0 �4d�

The CFX4.2 is used to solve this sensitivity problem.
The functional J(qÃ n+1) for iteration n+1 is obtained

by rewriting Eq. (2) as

J�q̂n�1� �
�tf
t�0

XM
m�1
�Tm�q̂n ÿ bnPn� ÿ Ym�2 dt �5a�

where we replace qÃ n+1 by the expression given by Eq.
(3a). If temperature Tm (qÃ n ÿ b nP n) is linearized by a
Taylor expansion, Eq. (5a) takes the form

J�q̂n�1� �
�tf
t�0

XM
m�1
�Tm�q̂n� ÿ bnDTm�Pn� ÿ Ym�2 dt �5b�

where Tm (qÃ n) is the solution of the direct problem by
using estimate qÃ n for exact q at (xm, ym, zm) and time
t. The sensitivity functions DTm (Pn) are taken as the
solutions of problem (4) at the measured temperature
extracting positions (xm, ym, zm) and time t by letting
Dq=Pn. The search step size b n is determined by mini-
mizing the functional given by Eq. (5b) with respect to
b n. The following expression results:

bn �

�tf
t�0

XM

m�1�Tm�t� ÿ Ym�t��DTm�t� dt�tf
t�0

XM

m�1�DTm�t�2� dt
�6�

4.2. Adjoint problem and gradient equation

To obtain the adjoint problem, Eq. (1a) is multiplied
by the Lagrange multiplier (or adjoint function) l(x, y,
z, t ) and the resulting expression is integrated over the
correspondent space and time domains. Then the result
is added to the right-hand-side of Eq. (2) to yield the
following expression for the function J[q(S1, t )]:

C.-H. Huang, S.-P. Wang / Int. J. Heat Mass Transfer 42 (1999) 3387±34033390



J �q�S1, t�� ��tf
t�0

�
S2

�Tÿ Y �2d�xÿ xm�d� yÿ ym�d�zÿ zm� dS2 dt

�
�tf
t�0

�
O

l

(
@ 2T

@x 2
� @

2T

@y2
� @

2T

@z2
ÿ @T
@ t

)
dO dt �7�

The variation DJ is obtained by perturbing q by Dq
and T by DT in Eq. (7), subtracting from the resulting
expression the original Eq. (7) and neglecting the sec-
ond-order terms. We thus ®nd

DJ �
�tJ
t�0

�
S2

2�Tÿ Y �DTd�xÿ xm�d� yÿ ym�

d�zÿ zm� dS2 dt��tJ
t�0

�
O

l

"
@ 2DT
@x 2

� @
2DT
@y2

� @
2DT
@z2
ÿ @DT

@ t

#
dO dt �8�

where d(�) is the Dirac delta function and (xm, ym, zm),
m=1±M, refer to the measured temperature extracting
positions. In Eq. (8), the domain integral term is refor-
mulated based on the Green's second identity; the
boundary conditions of the sensitivity problem give by
Eqs. (4b) and (4c) are utilized and then DJ is allowed
to go to zero. The vanishing of the integrands contain-
ing DT leads to the following adjoint problem for the
determination of l(x, y, z, t ):

@ 2l
@x 2
� @

2l
@y2
� @

2l
@z2
� @l
@ t
� 0, in O, t > 0 �9a�

@l
@n
� 0 on S1, S3±S6, t > 0 �9b�

@l
@n
� 2�Tÿ Y �d�xÿ xm�d� yÿ ym�d�zÿ zm� on

S2, t > 0

�9c�

l � 0 in O, t � tf �9d�

The adjoint problem is di�erent from the standard in-
itial value problems in that the ®nal time conditions at
time t=tf is speci®ed instead of the customary initial
condition. However, this problem can be transformed
to an initial value problem by the transformation of
the time variables as t=tf ÿ t. Then the standard tech-
niques of BEM can be used to solve the above adjoint
problem.
Finally, the following integral term is left

DJ �
�tf
t�0

�
S1

lDq�S1, t� dS1 dt �10a�

From de®nition [1], the functional increment can be
presented as

DJ �
�tf
t�0

�
S1

J 0�q�S1, t��Dq�S1, t� dS1 dt �10b�

A comparison of Eqs. (10a) and (10b) leads to the fol-
lowing expression for the gradient of functional
J '[q(S1, t )] of the functional J [q(S1, t )]:

J 0�q�S1, t�� � l�x, y, z� jon S1
�11a�

We note that the gradient J ' at ®nal time t=tf is
always equal to zero since l(x, y, z, tf )=0. If the initial
guess values of q 0 cannot be predicted correctly before
the inverse calculation, the estimated values of heat
¯ux q will deviate from exact values near the ®nal time
conditions. This is the case in the present study! Now
the arti®cial gradient at ®nal time is de®ned as follows:

J 0�S1, tf� � l�x, y, z, tf ÿ Dt� �11b�

where Dt denotes the time increment used in CFX.
By replacing the arti®cial gradient Eq. (11b) to the

gradient Eq. (11a), the singularity at ®nal time t=tf
can be avoided in the present study and a reliable
inverse solution can be obtained.

4.3. Stopping criterion

If the problem contains no measurement errors, the
traditional check condition is speci®ed as

Jbq̂n�1�S1, t�c<e �12a�

where e is a small-speci®ed number. However, the
observed temperature data may contain measurement
errors. Therefore, we do not expect the functional Eq.
(2) to be equal to zero at the ®nal iteration step.
Following the experiences of the authors [1±3], we use
the discrepancy principle as the stopping criterion, i.e.
we assume that the temperature residuals may be ap-
proximated by

Tm�t� ÿ Ym�t�1s �12b�

where s is the stand deviation of the measurements,
which is assumed to be a constant. Substituting Eq.
(12b) into Eq. (2), the following expression is obtained
for stopping criteria e:

e �Ms2tf �12c�
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Then, the stopping criterion is given by Eq. (12a) with
e determined from Eq. (12c).

5. Computational procedure

The computational procedure for the solution of this
inverse problem using CGM may be summarized as
follows.

Suppose qÃ n(S1, t ) is available at iteration n.
Step 1. Solve the direct problem given by Eq. (1)
for T(x, y, z, t ).
Step 2. Examine the stopping criterion given by Eq.
(12a) with e given by Eq. (12c). Continue if not sat-
is®ed.
Step 3. Solve the adjoint problem given by Eq. (9)
for l(x, y, z, t ).
Step 4. Compute the gradient of the functional J '
from Eq. (11).
Step 5. Compute the conjugate coe�cient g n and
direction of descent Pn from Eqs. (3c) and (3b), re-
spectively.
Step 6. Set Dq=Pn, and solve the sensitivity pro-
blem given by Eq. (4) for DT(x, y, z, t ).
Step 7. Compute the search step size b n from Eq.
(6).
Step 8. Compute the new estimation for qÃ n+1 from
Eq. (3a) and return to Step 1.

6. Results and discussion

The objective of this article is to show the validity of
the CGM in estimating the boundary heat ¯ux q(S1, t )
accurately with no prior information on the functional
form of the unknown quantities.
To illustrate the accuracy of the CGM in predicting

boundary heat ¯ux q(S1, t ) in an arbitrary domain O
with 3-D inverse analysis from the knowledge of tran-
sient temperature recordings, two speci®c examples
having di�erent forms of heat ¯uxes are considered
here.
In order to compare the results for situations invol-

ving random measurement errors, we assume normally
distributed uncorrelated errors with zero mean and
constant standard deviation. The simulated inexact
measurement data Y can be expressed as

Y � Yexact � os �13�
where Yexact is the solution of the direct problem with
an exact boundary heat ¯ux q(S1, t ); s is the standard
deviation of the measurements; and o is a random

variable generated by subroutine DRNNOR of the
IMSL [12] and will be within ÿ2.576±2.576 for a 99%
con®dence bound.
One of the advantages of using the conjugate

gradient method to solve the inverse problems is that
the initial guesses of the unknown quantities can be
chosen arbitrarily. In all the test cases considered here
the initial guesses of qÃ(S1, t ) is taken as
qÃ(S1, t )initial=0.0.
The geometry for the test case is shown in Fig. 1a,

which represents an arbitrarily irregular domain having
thin thickness in the z-direction. If this thickness is too
thick, the estimated ¯uxes may be damped. The
boundary conditions on S2 (bottom surface), S3, S4, S5

and S6 are all insulated while an unknown heat ¯ux
q(S1, t ) is prescribed on S1 (upper surface). The grids
along the x- and y-directions are taken as 12 while
along the z-direction they are taken as 6. The time
interval is chosen as 24, i.e. tf=24, and time step
Dt=1 is used. Therefore, a total of 3456 unknown dis-
creted heat ¯uxes are to be determined in the present
study. The number of measured temperature extracting
positions M is taken as 144. The grid system for the
present study is shown in Fig. 1b.
We now present below the numerical experiments in

determining q(S1, t ) by the inverse analysis using the
CGM.
(A) Numerical Test Case 1
The unknown transient boundary heat ¯ux q(S1, t )

on S1 is assumed as

q1�I, J, t� � 60� sin

�
t

tf
p
�
,

1RIR12
1RJR12

24rtr0

q2�I, J, t� � 60� sin

�
t

tf
p
�
,

3RIR10
3RJR10

24rtr0

q3�I, J, t� � 40� sin

�
t

tf
p
�
,

5RIR8
5RJR8

24rtr0

q�I, J, t� � �q1 � q2 � q3�, in O 24rtr0 �14�

where I and J represent the grid index on surface S1.
It is obvious from Eq. (14) that q(S1, tf )=0 due to
sinusoidal function. Since qÃ(S1, t )initial=0.0, we con-
cluded that the singularity at ®nal time tf will not hap-
pen in this case and accurate inverse solutions can be
obtained. The exact plot for q(S1, t ) at t=6 and 12 is
shown in Fig. 2.
The inverse analysis is ®rst performed by assuming

exact measurements, s=0.0. The estimated q(S1, t )
after 30 iterations at t=6 and 12 is shown in Fig. 3. It
can be seen from Figs. 2 and 3 that the estimations are
accurate except for the locations of discontinuity. The
average error for this case is calculated as 5.2% where
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the average error for the estimated heat ¯ux is de®ned
as

Average error %

�
"X12

I�1

X12
J�1

Xtf
t�1

����q�I, J, t� ÿ q̂�I, J, t�
q�I, J, t�

����
#

� �12� 12� tf � � 100% �15�

where I and J represent the index of discreted
unknown heat ¯uxes on S1 and t denotes the index of
discreted time, while q(I, J, t ) and qÃ(I, J, t ) denote the
exact and estimated values of boundary heat ¯ux.
Next, let us discuss the in¯uence of the measurement

errors on the inverse solutions. First, the measurement
error for the temperatures measured by infrared scan-
ners is taken as s=0.35 (about 1% of the average

measured temperature), then error is increased to
s=0.7 (about 2% of the average measured tempera-
ture). The estimated q(S1, t ) at t=6 and 12 is shown
in Figs. 4 and 5 where the average errors in Fig. 4 is
7.1% and in Fig. 5 is 8.3%. The stopping criteria e is
calculated from Eq. (12c) and the number of iterations
is about 15 for the above test cases. This implies that
reliable inverse solutions can still be obtained when
measurement errors are considered.
In order to show the estimated inverse solutions

more clearly, we plot Fig. 6 which is the estimated
q(S1, t ) at t=6 and 12 obtained from Figs. 3 and 5 at
J=6.
(B) Numerical Test Case 2
The geometry for this test case is the same as was

used in Test Case 1. The unknown boundary heat ¯ux
q(S1, t ) is assumed as

Fig. 2. The exact heat ¯uxes q(S1, t ) for case 1 at t=6 and 12.
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Fig. 3. The estimated heat ¯uxes q(S1, t ) at t=6 and 12 using s=0.0.
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Fig. 4. The estimated heat ¯uxes q(S1, t ) at t=6 and 12 using s=0.35.
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Fig. 5. The estimate heat ¯uxes q(S1, t ) at t=6 and 12 using s=0.7.
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q1�I � � �ÿ0:08�Iÿ 4�2 � 2� 1RIR12; If q1<0 then

q1 � 0

q2�J � � �ÿ0:08�Jÿ 4�2 � 2� 1RJR12; If q2<0 then

q2 � 0

q3�I � � �ÿ0:16�Iÿ 9�2 � 1:6� 1RIR12; If q3<0

then q3 � 0

q4�J � � �ÿ0:16�Jÿ 10�2 � 1:6� 1RJR12; If q4<0

then q4 � 0

q5�I, J, t� � �q1 � q2� �
�

t

2:2

�
1RIR12
1RJR12

24 > t > 0

q6�I, J, t� � �q3 � q4� �
�

t

1:2

�
1RIR12
1RJR12

24 > t > 0

q�I, J, t� � q1�I, J, t� � q2�I, J, t� � 50
1RIR12
1RJR12

24 > t > 0

�16�

The exact plot for q(S1, t ) at t=6 and 12 is shown in
Fig. 7. One should note that in Test Case 2 we still use
qÃ(S1, t )initial=0.0, but now q(S1, tf )$0, therefore, we
concluded that the singularity at ®nal time tf will hap-
pen in this case and the modi®ed gradient at ®nal time
in Eq. (11b) must be used to overcome this singularity.
However, the inverse solutions near ®nal time under
this consideration is still not accurate, therefore, the
estimated heat ¯ux at the last few time steps are going
to be discarded to ensure good estimations are
obtained.
In Test Case 2 the estimated qÃ(S1, t ) is chosen up to

t=20 and the remainder four-time steps are neglected.
The inverse problem with CGM is ®rst calculated by
using exact measurements, i.e. s=0.0. After 30 iter-
ations the estimated boundary heat ¯ux q(S1, t ) at
t=6 and 12 is shown in Fig. 8. It is obvious that the
accuracy of the inverse solutions is reliable since the
average errors for CGM is 2.0% in this case.
Next, consider measurement errors s=1.4 (about

2.0% of the average measured temperature) and
measurement errors s=2.0 (about 3.0% of the average
measured temperature), the inverse solutions are
shown in Figs. 9 and 10. The average errors for CGM
are 2.8 and 3.7% in Figs. 9 and 10, respectively.
In order to show the estimated inverse solutions

more clearly, Figs. 11 and 12 show the estimated q(S1,
t ) at t=6 and 12 obtained from Figs. 8 and 10 at J=4
and 9, respectively.
From the above two test cases we learned that a 3-D

inverse heat conduction problem in estimating bound-
ary heat ¯ux is now completed. Reliable estimations
can be obtained when using either exact or error
measurements.

7. Conclusions

The CGM along with the CFX4.2 was successfully
applied for the solution of the 3-D inverse heat con-
duction problem to determine the unknown transient
boundary heat ¯ux in an irregular domain by utilizing
simulated temperature readings obtained from infrared
scanners. Several test cases involving di�erent measure-
ment errors and heat ¯uxes were considered. The
results show that the inverse solutions obtained by
CGM remain stable and regular as the measurement
errors are increased.
From the numerical test cases in the present study

Fig. 6. The estimated heat ¯uxes q(S1, t ) extracting from

Figs. 3 and 5 at t=6, 12 and J=6.
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Fig. 7. The exact heat ¯uxes q(S1, t ) for Case 2 at t=6 and 12.
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Fig. 8. The estimated heat ¯uxes q(S1, t ) at t=6 and 12 using s=0.0.

C.-H. Huang, S.-P. Wang / Int. J. Heat Mass Transfer 42 (1999) 3387±3403 3399



Fig. 9. The estimated heat ¯uxes q(S1, t ) at t=6 and 12 using s=1.4.
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Fig. 10. The estimated heat ¯uxes q(S1, t ) at t=6 and 12 using s=2.0.
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we concluded that the use of CFX as the subroutine in
the 3-D inverse problem in estimating the unknown
boundary heat ¯ux with the CGM has been done suc-
cessfully. By using the same algorithm, many practical
but di�cult 3-D inverse problems can also be solved.
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